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Summary 

Lyapunov stability theory is used to analyze the stability properties 

of equilibrium solutions to some linear and nonlinear partial differential 

equations. Stability conditions are established for systems which have, as 

a linear part, a self-adjoint differential operator or one which can be 

transformed into a self-adjoint differential operator. 

Although the techniques described are applied to systems occurring in 

hydrodynamics the methods can be used for similar problems in other fields 

as well. 



1. Introduction 

Frequently the analysis of systems describing physical processes gives 

rise to a stability problem of a system of partial differential equations. 

Often a stability analysis is carried out on an approximate system model 

having a finite number of degrees of freedom, usually obtained by a spatial 

discretization or a modal truncation method. The stability conditions so 

derived are sometimes not sufficient for stability except in the case of 

infinitesimally small perturbations. 

This approach is followed in one of the most recent contributions to 

the stability theory of hydrodynamical systems by Eckhaus [ll . His theory 

for analyzing the stability properties of the solutions to nonlinear partial 

differential equations is based on asymptotic expansions with respect to 

suitably defined small parameters and series expansions in terms of the 

eigenfunctions. This method becomes cumbersome for more complex systems. 

Some of the systems studied by Eckhaus r11 are investigated here using 

general Lyapunov stability theory. [2s31 The context of the approach is 

the same as in r11 , that is, an investigation of the formal properties of 

certain mathematical relationships without a rigorous justification of these 

formal properties. It turns out, for the examples cited, that considerable 

improvement in stability conditions is obtained by the procedure recommended 

in this report, even to the extent of allowing nonlinearities. 

The stability of the equilibrium solution is defined in terms of the 

norm induced by the inner product of the Hilbert space on which the solutions 

of the system are defined. For a certain class of differential operators 

the stability conditions of the equilibrium solutions can be derived in a 

straightforward way. This class of differential operators can be considerably 

extended by a transformation of the differential operator which involves a 
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modification of the inner product. The general approach, even to systems 

containing nonlinearities, is illustrated by examples. 

2. Statement of the Problem 

Many physical systems are formally described by partial differential 

equations of the form 

+ 1. u(t,xJ = ,g (&En; t& [elm)) at -- (2.1) 

where g<t& is an n-vector function and & is a matrix whose elements 

are linear or nonlinear differential operators specified on a bounded 

connected open subset n of an m-dimensional Euclidean space, E m . The 

parameters of & can be space dependent but not time dependent. In order 

to uniqlIcly specify solutions of (2.1) a set of additional constraints or 

boundary conditons must be given, generally by a relation of the form 

H U (t,&‘> = 0 &.’ E an; t E[OP)) -- (2.2) 

where & is a matrix whose elements are formally specified differential 

operators and aR is the boundary of R. Furthermore any snlutIon will 

depend on some initial function % (5) belonging to the n-dimensional 

space of functions, 0 which we will assume is a Hilbert space with elements 

smooth enough to assure that solutions to ( 2.1) and (2.2) exist and belong 

to 0. 

A solution to (2.1) and (2.2) will be designated as u(t,r; O+,), 

that is, the solution starting at t-0 and with initialcondition 9+, (xJ E 0, 

u(O, xi if01 =go'&. The solution of particular interest is the equilibrium 

solution l&,(LT) E 0, which is assumed to be 2 = ,. 
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In the following sections the stability of the equilibrium solution 

or the trivial solution, 1 = 0, will be formulated and for some particular 

systems further investigated. 

To formulate the concept of stability we suppose that 0, as a Hilbert 

space, has an inner product -J,U> _ and the norm, 11.11, induced by the 

inner product 1 IyI 1 = (<u.u>P2. Then the distance at any time between 

9 andg2inOisgivenby I~~L+-~~I~. As used here a general inner 

product of two functions 2, 1 E 0 is denoted by: 

W,U’ = / v T w(x) g dQ 
R- 

(2 * 3) 

where (T) denotes the transpose, 2 (xJ is a "weighting" matrix. Its elements 

can be chosen as continuous functions in 5 such that 

1 (XJ = ET(x) (2.4) 

and 

(2.5) 

for all .LE?i=cz+as2. 

The conditions (2.4) and (2.5) assure that the norm induced by (2.3) and 

the norm induced by ~1, u > = / xT EdQ are equivalent. 
n 

As will be shown, an advantageous choice of rJ(d depends on the form 

of the linear part of the operator & in (2.1). 

3. Stability of the Equilibrium Solution 

The concept of stahility can be defined in many different ways. here 

stability will refer to stability in the sense of Lyapunov, that is, a system 

is stable if for a sufficiently small perturbation from equilibrium, the 



solution will remain close to equilibrium for all future time. The 

stability of the trivial solution u = Q can now more precisely be defined 

in terms of the norm given on 0. 

Definition. The trivial solution 2 = 0 of (2.1) is said to be stable in the 

sense of Lyapunov if for every real number E>O, there exists a real number 

6>O such that I lE&(xJI 1 < 6 implies I I;( t, x; 9+>I I< E for all. t 2 0. 

Definition. The trivial solution u = 0 of (2.1) is said to be asymptotically 

stable if it is stable and in addition I lubx; t3-0)) I+fl as t*. 

The stability properties of the trivial solution u = Q of (2.1) can 

often be determined by consideration of the rate of change of the functional: 

V(g) = 11111 1' = <u,u> = ; cT W(xJ u d R 

The time variation of V<d along solutions is given by 

(3.1) 

V(t) = V(x(t, z; &-#n 

with V(O) = w&(&l> 

and its time derivative by 

t E [OS=> 

F = lim [ t (V(t+h) - v(t))1 
h+O 

for u (t,x; i&@> if the limit exists. 

Formally, from (3.2), it follows that since 

<g(t + h), g(t + h) ' - < u (t), fi (t)> = 

= a(t + h) + 2 (t), u (t + h) - u(t)> 

(3.2) 

(3.3) 



or 

yielding 

[<u(t + h) + u(t), - 
Y (t + h) - u(t) 3 

h (3.4) 

G!g = 2 < u (t, x; &<x>>, age, 2; J&I 
at > 

It is clear that if can be reduced to the form: 

dV(d 
dt 

2 2a I lg(t,x; !$ I I2 = 2a V(g) 

(3.5) 

(3.6) 

where a is some real constant, it follows by integration that 

V(uJ ,' Vi&)) exp 2at 

or I Iu (t, xi i+)) I I 2 I Ii&Cd I I ew at (3.7) 

and the equilibrium solution u = 0 will be asymptotically stable for a<@ 

and stable for a 2 0 for all t 2 0. The functional V(uJ with these 

properties is a LyapunoV Functional r31 . Thus, with the proper choice of 

inner product or norm, the square of the norm becomes the Lyapunov 

functional which establishes asymptotic stability. 

In the following section Y will be evaluated for a certain class 

of linear differential operators &. The section is followed by examples in 

which these methods are extended to certain nonlinear systems. 

4. Self-Adioint Linear Differential Operators 

Consider the system as given by ( 2.1) and (2.2) and let L be a linear 

operator. The extent to which one is able to reduce to the form 

1) In a completely functional analytic presentation, this equation would 
only be defined on the domain of &, D(L) & 8, but provided this domai 
dense in 0, the conditions derived later are sufficient for stability P3fS 



(3.6) depends intrinsically on the operator 4. With respect to an inner 

product, &*, the adjoint operator of & is formally defined by 

for all 1 in the domain of &. An important class of operators is formed by 

the self-adjoint operators. An operator is formally self-adjoint if &* = &. 

If one restricts oneself to the inner product 

(4.2) 

it is clear that the corresponding class of self-adjoint operators is very 

limited. The introduction of the matrix, W(xJ, often permits L to be made 

self-adjoint with respect to the generalized inner product (2.3). This is shown 

in the following example. 

Example. Let the differential operator &be given by 

L u z a(x) $$+ b(x) $+ c(x) u, (4.3) 

O~X~l, a(x) 1 6 > 0, b(x) # 0 and boundary conditions u(0) = u(1) = 0. 

Then with the inner product (4.2): 

<v, T, u> = I1 v L u dx = /l {a(x)v $$ + b(x)v -& + c(x) vu)dx. 
0 0 

After integration by parts and substitution of the boundary conditons, 

assuming v(0) - v(l) = 0 one gets 

ev, L U> = /l 113 $(a(x)v)-u 

0 
5 (h(x)v) + c(x)vuMx 

= * <I. v, u> 

where L* is given by 
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L*v E $ (a(x)v) - & (b(x)v) + c(x)v, 

0 2 x 2 1 and boundary conditions v(O) = v(l) = 0. Clearly L* # L and L 

is not self-adjoint. 

But L is equivalent to Le as given by 

1 
abbd 2) 

Le" ' w(x) ax + cl(X) u, (4.4) 

0 2 x 2 1, where q(x) = c(x) 

P(X) = exp lx $$ dx 
0 

w(x) = (a(x)) 
-1 

exp / x m dx 
o a(x) 

and boundary conditons u(O) = u(l) = 0, This can be verified directly. 

Application of the general inner product (2.3) gives 

CV,L u>=J 1 VL e 0 
e u w dx = / {v ax J- (p(x) 

0 
2) + vq(x)uwldx 

Integration by parts of the expression in the integrand and substitution of 

the boundary conditions, with the assumption v(O) = v(l) = 0 gives 

<v, Le u> = /l IIJ ?- 
0 

ax (P(x) 2) + u q(x)v w) dx = ~t*~v, u> = 

= <L,v, uk 

Thus Le will be self-adjoint with respect to the inner product 

-9 u>=/lv u w dx. 
0 

(4.5) 



The significance of the choice of inner product becomes apparent on 

evaluation of a'.'@ 
dt given by (3.5) where V(g) is given by (3.1), for 

self-adjoint operators. If &is a self-adjoint operator with a lower semi- 

bounded spectrum and Amin is the smallest eigenvalue of I,, then 

x min <UP u> 2 <us 4 u> (h.6) 

To show how this property can be used, consider the linear system 

au 
at+4u=11. (4.7) 

and let L be a differential operator with possihly space dependent coefficients. 

Let a set of boundary conditions be specified and let L be self-adjoint with 

respect to the general inner product 

<V, u> = / xT W(E) g dR (4.8) 
R 

From (3.5) and the fact that & is self-adjoint with a lower semi-hounded spectrum 

and X min is the smallest eigenvalue of I,, it follows that 

dV(a 
- < dt = -7.A min <us u> (4.9) 

Hence if Xmin > 0 we have (3.6) and thus asymptotic stability. 

A similar approach can be followed when L is time varying by introducing 

W(x, t)* The elements of W(x, t) must be continuous in both x and t and 

continuously differentiable in t and such that (2.4) and (2.5) are satisfied. 

The derivative dV(u) can be evaluated as in Section 3. This yields an 

dt 

additional term in (4.9) which can he estimated to yield a sufficient condition 

for stability. 



The use of this general inner product has the advantage of relating 

the stability properties directly to the eigenvalues of the differential 

operator for a large class of operators. As will be shown in the examples 

in the next section in order to reduce d V&l to the form CL <g, g> one 
dt 

can apply well-known integral inequalities rather than calculating the 

eigenvalues. The use of the general inner product representation facilitates 

the application of these inequalities and improves on the resulting stability 

condition. Of course these inequalities [41 , although standard, are to some 

extent based on estimates of the eigenvalues. 

When applied to nonlinear differential operators the advantages become 

even more apparent since this permits an estimate for the set of initial 

functions in 0 for which the trivial solution is asymptotically stable. In 

the next section this will be illustrated by applying the above methods to burgers' 

model of turbulence and some of its modifications as studied by Eckhaus [II . 

5. Applications. 

Example 1. Burgers' model to describe turbulence as studied by Eckhaus [11 is 

given by 

aul .L 
a% 1 auf 

-mu - 
at ’ R ax2 ax 

- + - - u1u2 = 0 

2 u1 dx = 0 (5.1) 

0 2 x < 1 and boundary conditions ul(0) = ul(1) = 0. To illustrate the = 

foregoing we will make a slight generalization of the above problem and 

in the sequel establish the results of Eckhaus. 
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(a> Consider first the linear system 

-I) [ u1 
-1-i ;: ' 0 

where u= 1 
u2 

; &= 0 sR 1 (5.2) 

with R = R(x) > 0 for XE [O,l] and boundary conditions ul (0) = ul(1) = 0. 

This assumption complicates the problem, because with constant R the operator 

& is self-adjoint with respect to the inner product 

<v, u> = j; (vlul + v2u2)dx (5.3) - 

and the condition for asymptotic stability of the trivial solution 2 = 0 

can be derived from the smallest eigenvalue of L which is easil) determined. 

However, since R(x) is assumed to be space dependent, some sort of 

variational technique would be required to obtain A min' This can be avoided as 

shown below by making use of an integral inequality. 

For the system as given by (5.2) choose as V(E) functional: 

1 
V(x) = /Iv] I2 = <u, u> = JOT E(x) 1 dx (5.4) 

where E(x) = (5.6) 

V(u> is now the required Lyapunov Functional r31 if -!!I& c 0. & is 

self-adjoint for the inner product (5.4), however determination of the 

eigenvalues is not as immediate as in the case or' constant R. The derivative of 

v<u> is: 
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- = -2 al, L u> 
dt -- 

Substituting & and W(x) gives: -- 

(5.7) 

dV (u> a2u1 i 2 -= 
dt -2 j; &R(x)u: 

- ulX + - u R(x) 2 }dx ' (5.8) 

Integration by parts of the second term in the integrand of (5.8) and substi- 

tution of the boundary conditions gives 

dV (2) 1 
-= 

dt -2 1, {-R(x) u; + Cax au1,2+ &-J u,21 dx 

Now the following integral inequality [41 holds for ul 

aul 2 
al; ) dx 2 .* j:, 11; dx. 

Thus dV(u> 
< -2 j; {(d 

1 

dt = - R(x))u; + - 
Izh) u; )dx 

(5.9) 

(5.10) 

(5.11) 

or 

dV <cJ 1 1 
dt z -min XE [O,ll 

(Ro (d - R(x)), p,(x> ) 1 IYI I2 (5.12) 

The equilibrium solution 2 = 0 will be asymptotically stable if 

min 1 
XE [O,l] (R(x) (n 2 - R(x)),&)> o (5.13) 1 

Since R(x) > 0 for x E IO,11 condition (5.13) reduces to 

I? > max R(x) . 
XE IO,11 

(5.14) 

I.2 



WSth constant R>O, for 2 = 0 to be asymptotically stable, it follows immediately 

from (5.14) that a sufficient condition is that 

O<R<n2 (5.15) 

This condition is identical to that obtained by requiring that Xmin of G be 

positive, since it is shown in [l] that. 

'ln =<(n+l)-1 (n=0,1,2,...) 

x 1 
20 = I? (5.16) 

au2 (b) Next consider the nonlinear case and suppress (as in [l])the at 

term in (5.1). This gives: 

au L a2u + $$ + R[I 12 
at-U-R a,;! . u dx] u = 0 

0 
(5.17) 

0 < x < 1 and boundary conditions u(O) = u(l) = 0. = = For simplicity, assume 

in addition that R is a positive constant here. "eking as V(u) functional 

V(u) = llu11* = 1,' u2 dx (5.18) 

its time derivative becomes: 

y.g = -2 j1 { -u2 - + u(s) +u$+R(jl u2dx) u2 ldx. (5.19) 
0 0 

Integration by parts and substitution of the boundary conditions gives: 

u2dx) u2]dx (5.20) 

Applying the integral inequality (5.10), the fact that jI 
0 

u2dx 1 0 and 

R > 0 gives: 

2 -2 j; ( $ - 1) u2 dx. (5.21) 

13 



Thus the modified nonlinear system also has an asymptotically stable 

equilibrium solution u = 0 for 

O<R<sr2 (5.22) 

au2 This verifies the previously obtained result in [l] suppressing the ar term. 

(c) Next it will be shown that a stability analysis of the nonlinear system (5.1) 

can be made with the techniques described above without making the modification 

under (b), a result not obtained in [l]. Consider the system as given by (5.1) 

and let R be constant. Since R is constant take as V(x) functional: 

1 
V(x) = < Ll, g > = 1, (u2, + u;) dx (5.23) 

The time derivative of V(u> becomes after substituting (5.1): 

dV(d 
dt = -2 1; [-uf - $ u1 s - u;u2 + $ u; + u2 j; u;dx + u1 g] dx (5.24) 

Integration by parts and substitution of the boundary conditions and inequality 

(5.10) gives: 

2 -2 j: [ ( $ -1) II; + $ u; - u2 by 2 j; u;dx)]dx. (5.25) 

The inequality (5.25) can also by written as: 

dV(x) IT* 
< -2 j; [( R -1)~; +; u;]dx l- 

,; u2(u;- j; u; dx)dx 

dt- 

I 

(5.26) 

j;[( $ -1,~; + $ u;] dx 

and certainly: 

dV (~1 
< -2 j; [( $ -1)~; + + u;]dx 

I1 Iu2(u; + ,A u;dx) Idx 
de= ': 

0' [( f$ -1)~; + + u;]dx 

1 

(5*27) 



Repeated application of the Buniakovsky - Schwartz inequality and the fact 

that Jo1 u:dx 2 11111 I2 and 1 oluidx 2 11111 I* yields from (5.27): 

dV (21 
< -2 j; [( j$ -1)~; + f u;]dx 

21 Id I3 
dt = l- 2 

min( e -1, R 4 11~112 1 (5.28) 

or 

dV (1) 
< -2 j; [( $1)~; + f u;]dx dt = l- 2 

L 
min( f -I,+) 

11~11 l (5.29) 1 
A sufficient condition for the trivial solution u=O of (5.1) to be -- 

asymptotically stable is thus that 

0 < R < IT* (5.30) 

and the disturbances be bounded in norm by 

II~I I < + min (5 -1, *) . (5.31) 

Kotice that (5.30 - 5.31) requires the linear approximation of the system (5.1) 

to be asymptotically stable, which should be expected. 

The conditions (5.30 - 5.31) are derived without any prior knowledge about 

the solutions, an important advantage of the Lyapunov approach. However an 

examination of (5.1) shows that u 2 is independent of x. Consequently u2 can be 

taken outside the integral sign in (5.26). Upon integration there follows 

dV (21 

dt 
-1) u; + f u;] dx (5.26a) 

A sufficient condition for the asymptotic stability of the trivial solution 

u = 0 of (5.1) is thus 0 < R < v2, the same as the linear approximation case. 
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This example shows that the Lyapunov stability theory not only enables us 

to verify the results of [II but to extend these results considerably. 

Example 2. Next we consider a second example from 111 

au __ (x2 + & u _ hx 2 - +$ + ~~ 
at (5.32) 

O<x;l, = boundary conditions u(O) = u(l) = 0 and R a positive constant. 

The linearized system is given by: 

au 
at 

-(x2+ quu- 2 au-*$=, 
p pxau (5.33) 

0 2 x 2 1 and boundary conditions u(0) = u(l) = 0. The linear differential 

operator L of (5.33) is not self-adjoint for the inner product 

<v,u> = vu dx. (5.34) 

Hence on the basis of the preceding, we might expect that the stability 

condition derived with this inner product would not be the best possible one. 

To illustrate this take as the functional V(u): 

l2 V(u) = I, u dx. 

The time derivative follows after integration by parts as 

dV(u) _ 
dt + x2) u2}dx. 

Applying the inequality (5.10) gives 

(5.36) 

(3.37) 
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And a sufficient condition for asymptotic stability of the solution u=O is: 

(5.38) 

or 

OCR<+ (1 + 2x2 (5.39) 

One can improve greatly on condition (5.39) as an evaluation of the 

eigenvalues of L suggests (see [l]) by observing that L is equivalent to the 

operator Le as given by: 

1 
Leu q - - 

w(x) $P( x> $r+ q(x>u (5.40) 

with 

p = exp @x2 

w=Rexp Rx r' 

and boundary conditions u(0) = u(1) = 0. 

The functional V(u) will be taken as 

v(u) = < u,u > = J 12 
u w(x)dx. 

0 
(5.41) 

After integration by parts and substitution of the boundary conditions 

its time derivatives becomes: 

v- R X2(22)2 - Re d- R x2 (x2 + +u']dx. 
fF 

(5.42) 

Here the inequality (5.10) can again be applied, now however to e UP 

rather than to u. Substituting the result into (5.42) gives: 



w?+ < -2 ,; ( .2 - ' u2 w(x) dx. 
= R @ 

(5.43) 

The condition for asymptotic stability of the equilibrium solution u=O of 

(5.33) follows from (5.43) as 

0 < R < r4. (5.44) 

This condition is identical to that found by evaluating the eigenvalues of L 

as should be expected. Further, comparison of (5.39) and (5.44) shows the 

intrinsic dependence of the stability condition on the V(u) functional chosen. 

The modification of the functional V(u) based on a transformation of the 

differential operator L in this case results in a significant improvement of 

the bounds of the system parameters to assure stability. However, as indicated .- 

in Example 1, the results are even more important when dealing with nonlinear 

systems. To show this consider the nonlinear system (5.32). Take as V(u) 

functional (5.41), thus 

1 2 
v(u) = j-, u w(x) dx. (5.45) 

The time derivative of V(u) becomes: 

.+= -2 I1 {e flx2(&)2 _ Re flx2(x2 + 

0 ax +fReFx2 u$$+ 

+ R3eflx2[ 1: u2dx]u2}dx. (5.46) 

Integration by parts, substitution of the boundary conditions and the inequality 

(5.10) together with the fact /lu2dx 2 0 and R > 0 give 
0 

x u]u2w(x) dx. (5.47) 

18 



Since 0 2 x 2 1, will certainly be negative definite for 

(5.48) 

for all xc [O,l]. 

Hence the equilibrium solution u=O of (5.32) will be asymptotically stable 

for all disturbancesbounded by 

max 

XE IO,11 
I4 < 5; ($ -1). (5.49) 

This result is again similar to that obtained by Eckhaus [l], however 

the above procedure enables one to obtain it in a straightforward way without 

making many complicated calculations as is the case when using asymptotic 

expansions. 

6. Conclusions 

Some recent results in the stability theory of partial differentialequa- 

tions have been obtained by means of Lyapunov stability theory. Although the 

application of this theory might not be as unified as the approach outlined 

by Eckhaus [l] it is felt that with some sophistication many results can be 

obtained in a less cumbersome way. It is also gratifying that many of the 

results of Eckhaus are verified using Lyapunov stability theory. Among the 

useful tools that can be applied we have demonstrated a transformation of the 

differential operators and the use of integral inequalities. 

The feasibility of Lyapunov stability theory in the analysis of solutions 

to partial differential equations is clearly established by the ease with 

which sufficient conditions for stability are determined for the linear and 

nonlinear systems discussed in the examples. 
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